
Programming Peperoni’s USB DMX512 Interfaces

Version 2.2

by Dr. Jan Menzel∗

June 18, 2007

Abstract

This document describes how all USB DMX512 interfaces by Peperoni1 and Lighting-Solutions2 are

programmed. It includes all information software engineer have to supply to the operating systems USB-stack

to talk to the interfaces.

1 Identifying

Lighting-Solutions has the Vendor ID (idVendor) 0x0ce1 (dec. 3297). The product ID (idProduct) of the USB

devices within the scope of this document are

Product idProduct

USBDMX X-Switch 0x0001

Rodin1 0x0002

Rodin2 0x0003

RodinT 0x0008

USBDMX21 0x0004

bDeviceClass [1, p. 197] is 0xff (vendor-specific device class), bDeviceSubClass is 0x00 and bDevicePro-

tocol 0x01.

The manufacturer (iManufacturer) and product (iProduct) strings are set and can be read. Their values

depend on the product. The serial number string iSerialNumber is not used.

2 Configuring

All interfaces have one configuration with bConfigurationValue [1, p. 202] set to 1. bInterfaceClass is set to 0xff

(vendor-specific class), bInferfaceSubClass to 0x00 and bInterfaceProtocol = 0xff (vendor-specific protocol).

To configure any device send a SetConfiguration(1) request. The power consumption for all devices is below

100mA, making them low power devices which can be operated on bus powered hubs. Non of the devices

supports the Remove Wakeup feature and String descriptors for the configuration (iConfiguration).

The USBDMX X-Switch is the only device, which has up to three configurations to adapt the needs to the

available power. If unconfigured both transmitter and receiver are disabled. Using configuration 1, only the

transmitter is active requiring current of 180ms. With configuration 2 both transmitter and receiver are enabled

requiring 220mA, whereas configuration 3 only enables the receiver (65mA). Configuration 3 is only available

with firmware version 1.1 (see section 4 for details) or higher. In the USBDMX X-Switch each configuration

has its own string descriptor (iConfiguration).

∗menzel@peperoni-light.de
1Peperoni, Dr. Jan Menzel & Dirk Bertelmann, Stiefmuetterchenweg 26, 22607 Hamburg, Germany, http://www.peperoni-light.de
2http://www.lighting-solutions.de

1

3 Programming

All interfaces support information exchange via control pipe. In addition, information exchange via bulk pipes

has been added to later version.

3.1 Via Control Pipe

All information exchange with all interfaces can be done using control transfer to EP0 (in and out) and vendor-

specific requests [1]. As specified, the direction of data flow is determined from bit 7 in bmRequestType [1, p.

183]. To denote a vendor-specific request bits 5 and 6 have to be set to 0x2 [1, p. 183].

The requested function is determined from evaluating the bRequest [1, p. 183] field. The following 9

requests are implemented:

Name bRequest Description

ID_LED 0x02 Read/write led usage

DMX_TX_MEM 0x04 Read/write transmitter data memory

DMX_TX_SLOTS 0x05 Read/write transmitter slot counter

DMX_TX_STARTCODE 0x06 Read/write transmitter startcode

DMX_TX_FRAMES 0x07 Read transmitter frame counter

DMX_RX_MEM 0x08 Read/write receiver data memory

DMX_RX_SLOTS 0x09 Read/write receiver slots counter

DMX_RX_STARTCODE 0x0A Read/write receiver startcode

DMX_RX_FRAMES 0x0B Read receiver frame counter

3.1.1 ID_LED

Get or set the led usage of Rodin interfaces.

All Rodin interfaces have a dual color blue/red led. Using this request one can change the usage of this

led. To set the led usage send a ID_LED request with wValue representing the new value and wLength set to 0

(meaning no data stage). To read the led usage a ID_LED and expect the result in 1 byte back.

The default is 0xff which signals activities on the USB. If the value is set to 0xfe the red led will blink of

not dmx signal is received. For all other values the led will blink the corresponding number using a long blink

for 10th and short for 1th.

3.1.2 DMX_TX_MEM, DMX_RX_MEM

Access transmitter (DMX_TX_MEM) or receiver (DMX_RX_MEM) memory.

The interface sends back or expects wLength bytes3. Data is read from or written to memory with offset

wIndex. wIndex = 0 is the first slot of the DMX512 frame, but not the startcode. Boundaries are not checked

by any interface. Writing slots above 512 ought to be avoided. Reading slots larger then 512 will return in

unknown data.

wValue has to have the value 0x0000 by default. If wValue is set to 0x0001, reading or writing is blocked

until the current frame has been transmitted or received completely.

Blocking of this read/write feature is only available with firmware version 1.1 (see section 4 for details) or

higher.

3one byte is treated as one DMX512 slot

2

Recommendations

• Due to the USB protocol overhead transferring one large block should be favoured over many small ones.

• Blocking should be used when updating the transmitter respectively reading the receiver solely.

• To update the transmitter memory and read the receiver memory in parallel, blocking should be used for

writing the transmitter memory while the receiver memory should be read non-blocking. Only for appli-

cations mostly retransmitting received data and relying on low latency this schema should be inverted.

Blocking should be used for reading the receiver memory while the transmitter memory is written non-

blocking. This allows to exactly follow the received data while the other schema has the advantage of

fastest data transmission.

3.1.3 DMX_TX_SLOTS, DMX_RX_SLOTS

Get or set the number of slots to be transmit (DMX_TX_SLOTS) or read the number of slots received in the

last DMX512 frame (DMX_RX_SLOTS).

To set the number of slots to be transmitted send a DMX_TX_SLOTS request with wValue representing the

new value and wLength set to 0 (meaning no data stage). Setting the number of slots of the received will result

in an error.

To read the number of slots transmitted or last received send a DMX_TX_SLOTS or DMX_RX_SLOTS

request and expect the result in 2 bytes back. The lower byte is transmitted first.

The default is to transmit 512 slots per frame.

3.1.4 DMX_TX_STARTCODE, DMX_RX_STARTCODE

Get or set the transmitter’s or receiver’s start-code.

To set the transmitter or receiver start-code send a DMX_TX_STARTCODE or DMX_RX_STARTCODE

request with the new value in wValue and wLength set to 0. Note, that the receiver will only read frames with

the start-code set.

To read the current start-code send a DMX_TX_STARTCODE or DMX_RX_STARTCODE request and

expect the result as 1 byte back.

The default start-code is 0x00 for transmitter and receiver.

3.1.5 DMX_TX_FRAMES, DMX_RX_FRAMES

Get the number of frames transmitted or received.

Transmitter and receiver have individual 32 bit counters for counting the number of frames transmitted or

received. This counters are cleared on power up and incremented on any successful transmitted or received

DMX512 frames. Note, that receiver only count frames with their start-code equal to the one set (see section

3.1.4).

The frame counter can only be read by sending a DMX_TX_FRAMES or DMX_RX_FRAMES request and

expecting the result as 4 bytes back. The lowest byte is again transmitted first.

Trying to set the frame counter will result in an error.

These counters are designed to check e.g. whether the receiver is active and/or if a new DMX512 frame

has been successfully received. Since the counters are 32 bits in size the numbers will be almost unique, but

software engineers should be aware of overflows.

3.2 Via Bulk Pipe - old version

Starting from firmware version 4.0 (bcdDevice ≥ 0x0400) a new and fast protocol for data exchange via a

bidirectional bulk pipe was added. Starting with this firmware two bulk endpoints with bEndpointAddress of

0x02 (direction out) and 0x82 (direction in) are available.

3

Data exchange is always done by sending a command structure to the device followed by a data transmission

either from host to device or from device to host. This transmission only reads or writes the content of transmitter

or receiver memory. It does change anything else. Changing the startcode or reading frame counters still has

to be done via control transactions. Also reading or writing transmitter or receiver memory blocking is not

supported by this protocol.

The command structure is defined as follows.

Offset Field Size Description

0 protocol 1 Protocol identifier, has to be 1

1 request 1 request type

2 slots 2 size of the data stage, max. value: 512

The total size of the command structure is 4 bytes.

Slots has to be transmitted as little endian with LSB first.

The requests supported are

Request Value Description

TX_SET 0x00 Write the transmitter memory

TX_GET 0x01 Read the transmitter memory

RX_SET 0x02 Write the receiver memory

RX_GET 0x03 Read the receiver memory

TX2_SET 0x04 Write the second universes transmitter memory

TX2_GET 0x05 Read the second universes transmitter memory

Using this protocol one sends a command structure with the intended request followed by sending or reading

slots bytes of data. In case of any <X>_SET request the command structure and data should be placed back-to-

back in one USB transaction.

3.3 Via Bulk Pipe - new version

Starting from firmware version 5.0 (bcdDevice ≥ 0x0500) a highly sophisticated protocol, optimized for RDM,

via a bidirectional bulk pipe was added. This new version exchanges all relevant parameters in the device at

once. Hence it allows to send and receive frames with individual parameters. It even allows to switch between

transmission and reception on a frame by frame base.

Compared with the old version, this new version uses a three stage strategy for data exchange: first a

command structure is send from host to device. Then data with a previously negotiated amount and direction is

exchanged. Finally a status structure is send from device to host.

3.3.1 The Command Structure

The command structures is composed of a general structure follows by an individual structures depending on

the request.

Offset Field Size Description

0 version 4 Protocol Version: 0x326b4d02

4 request 1 request type

5 universe 1 universe number

6 length 2 length of the data stage

4

All multi byte values are little endian and have to be send LSB first.

request can have the following values:

Request Value Description

REQUEST_TYPE_SET 0x00 Transmit a DMX512 frame

REQUEST_TYPE_GET 0x10 Receive a DMX512 frame

The length-field specifies the total length of the data stage. The maximum value is 519.

For data transmission (request = REQUEST_TYPE_SET) the command structure is completed by the fol-

lowing structure:

Offset Field Size Description

8 config 1 configuration for the transmission

9 time 2 time in units of ms, meaning depends on config

11 time_break 1 length of Break, see text

12 time_mab 1 length of Mark-after-Break, see text

config controls the transmission and can have a or’ed combination of the following values:

Configuration Value Description

CONFIG_DELAY 0x01 Delay this frame with respect to the previous

CONFIG_BLOCK 0x02 block USB transaction until transmission starts

CONFIG_SWITCH_RX 0x04 switch to receive mode immediately after this frame

CONFIG_DONT_RETRANSMIT 0x08 do not retransmit this frame

If CONFIG_DELAY is set the start of this frame will be delayed by the given value of time (units ms)

with respect to the previous frame. The actual value used as reference from previous frame is the one returned

as timestamp in the status stage. Using this feature one can precisely send e.g. 20 frames per second if the

time difference between the last frame transmitted and the exact time the next frame has to be transmitted is

calculated and set as time value. Usually this value will be just the time between two frames.

Setting CONFIG_BLOCK will block the current USB transaction until either time has elapsed or the DMX

universe transitions back to idle state. The former will be reported as STATUS_TIMEOUT, whereas the later

means that the previous transmission or reception has finished.

The values of time_break and time_mab are in internal units to be calculated using

time(t) = 256− (t − to f f set)/tunits (1)

with the parameters

Variable tunits to f f set Default

time_break 2.67µs 1µs 181

time_mab 2.67µs 5µs 250

Both, time_break and time_mab, can have any value between 0 and 255. If set to 255 no break and/or no

Mark-after-Break is generated.

For data reception (request = REQUEST_TYPE_GET) the command structure is completed by the following

structure:

5

Offset Field Size Description

8 slots 2 number of slots to receive, incl. startcode

10 timeout 2 timeout to wait for the frame to be receive, units ms

12 timeout_rx 1 timeout for premature end of frame, see text

timeout defines the time to wait longest for a complete frame (slots slots, incl. start-code) to be received. If

that expires STATUS_TIMEOUT will be reported.

timeout_rx defines a time to wait longest for the next slot within the current frame to be receive. It can be

used to quickly detect a frame shorter as expected (less than slots slots, incl. start-code). If this time expires

a premature end of frame error (STATUS_RX_TIMEOUT) will be reported. The value to timeout_rx has to be

calculated using equation 1 with to f f set = 0 and tunits = 42.67µs giving timeout of up to 10.9ms at a value of 0.

Setting timeout_rx to 0xff will disable this feature. In this case caution should be taken, since transmission can

get impossible. 4

Taking the above said together a frame ends normally if slots slots (including start-code) have been received

or if the time between two consecutive slots was larger then timeout_rx.

Transceiver supporting this protocol will receive frames without startcode and report them as such.

3.3.2 The Data Structure

The data phases uses a rather simple structure:

Offset Field Size Description

0 version 4 Protocol Version: 0x326b4d02

4 slots 2 number of slots to transmit/received, incl. startcode

6 data 513 data to transmit or received incl. startcode

The length of the data structure is always given by the length-field of the command structure. The frame to

be transmitted or received can be shorter, meaning that slots does not have and will not necessarily be length -

6. This should be kept in mind when receiving data.

3.3.3 The Status Structure

The structure used as status stage is given as follows:

Offset Field Size Description

0 version 4 Protocol Version: 0x326b4d02

4 timestamp 2 timestamp of the frame transmitted or received, units ms

6 status 1 status of the last DMX frame

7 spare 1 for future use, to be ignored

timestamp is the actual value of a 16bit millisecond counter taken at the time the first slot was transmitted

or received. It can be used to precisely calculate the speed of reception or to precisely record and/or retransmit

DMX512 frames.

status can have the following values:s

4To understand that, one has to take into account that only on an idle line a transmission can be started safely. That means that any

previous reception has to have definitely ended. And detecting that can only be done by comparing expected and current number of slots

received and using this timeout.

6

Status Value Description

STATUS_OK 0x00 no errors

STATUS_TIMEOUT 0x01 request timed out

STATUS_TX_START_FAILED 0x02 delayed start of transmission failed

STATUS_UNIVERSE_WRONG 0x03 wrong universe addressed

STATUS_RX_OLD_FRAME 0x10 old frame not read

STATUS_RX_TIMEOUT 0x20 reception finished with timeout

STATUS_RX_NO_BREAK 0x40 frame without break received

STATUS_RX_FRAMEERROR 0x80 reception finished with frame error

All STATUS_RX_<X> values can be or’ed together.

STATUS_RX_TIMEOUT means that the reception finished because no slots was received within the expected

time given by the value of timeout_rx.

STATUS_RX_FRAMEERROR denotes that the frames finished with the last slot being not correctly received:

the level of one of the two stop bits was not HIGH.

4 Changes

4.1 Firmware

v1.0 (bcdDevice = 0x0100) initial version

v1.1 (bcdDevice = 0x0101) configuration 3 (read only), blocking read/write and the serial number were added.

v4.0 (bcdDevice = 0x0400) data exchange on bulk pipe using old protocol added.

v5.0 (bcdDevice = 0x0500) data exchange on bulk pipe using new protocol added.

4.2 Programming Specifications

v1.0 initial release

v1.1 changes related to firmware v1.1 added

v2.0 added documentation for bulk pipe data exchange

v2.1 section 3.3: command structure and status codes updated

v2.2 ID_LED added

References

[1] Universal Serial Bus Specification, Revision 1.1, 23.09.1998, http://www.usb.org

7

© 2001 – 2019 inoage GmbH | MADRIX® is a registered trademark | info@madrix.com | www.madrix.com

Technical Specifications

Power Supply DC 5 V, 500 mA, Power over USB

Power Consumption ~ 50 mA during normal operation

USB USB 2.0, type A plug, Plug and Play,

2 m cable

Plug 3-pin, XLR, female, NEUTRIK

Weight 110 g

Operating Temp. 10 °C to 50 °C

Storage Temp. -10 °C to 70 °C

Relative Humidity 5 % to 80 %, non-condensing

IP Rating IP20

Certificates CE, RoHS

Package Contents

 MADRIX® I/O

 Quick start guide / technical manual

More Information

Find all the latest user manuals, drivers, firmware updates,

and more at www.madrix.com

MADRIX I/OMADRIX® I/O products are supplementary

input and output devices.

External equipment, such as sensors, bring

additional automation processes and interaction

to any LED project using MADRIX® 5.

MADRIX USB SMPTE 4th Edition – 05/2019

Key Features

This input device allows you to effortlessly use SMPTE time code

for time synchronization across multiple devices.

Data is received via the 3-pin, female XLR connector.

The device can simply be connected to any USB 2.0 port.

Example of use: Cue List

DMX-IN/OUT With 5-Pin NEUTRIK XLR Port

This device allows you to send or receive DMX data using 512 DMX

channels. A male to male 3-pin or 5-pin XLR Gender Changer is

required for DMX-IN.

USB 2.0 Standard

The USB 2.0 standard is fully supported to allow for a higher

maximum speed of 480 MBit/s.

Power Over USB

The interface is powered directly via the USB port and does not

need an additional power supply.

High Quality

The USB ONE represents high quality made in Germany

and is very reliable.

Hot Swapping & Plug and Play

Devices can be connected to and disconnected

from the computer during use and without a reboot.

Remote Control

MADRIX® 5 can be controlled remotely using the implemented

DMX-IN functions.

Frame Rate Stability

Up to 60 devices can be connected to a USB host controller without

having any frame rate problems. (60 DMX512 interfaces amount to

30,720 DMX channels.)

Active USB

Please connect every USB ONE to an active USB 2.0 port or use a

USB 2.0 hub with a power supply.

Find all the latest user manuals, drivers, firmware updates,

and more at www.madrix.com

© 2001 – 2018 inoage GmbH | MADRIX® is a registered trademark | info@madrix.com | www.madrix.com

MADRIX USB ONE

One of the smallest USB interfaces

for DMX output or DMX input.

Key Features 4th Edition – 11/2019

The MADRIX® USB ONE allows you to control 512 DMX channels using the MADRIX® 5.

Use it either for DMX input or DMX output.

Technical Specifications

Power Supply DC 5 V, 500 mA, Power over USB

USB USB 2.0, type A plug, 2 m cable

DMX512 512 DMX channels, input or output

DMX512 Port 5-pin, XLR, female, NEUTRIK

Weight 105 g

Operating Temp. 10 °C to 50 °C

Storage Temp. -10 °C to 70 °C

IP Rating IP20

Certificates CE, FCC, RoHS

Package Contents

 MADRIX® USB ONE

	Identifying
	Configuring
	Programming
	Via Control Pipe
	ID_LED
	DMX_TX_MEM, DMX_RX_MEM
	DMX_TX_SLOTS, DMX_RX_SLOTS
	DMX_TX_STARTCODE, DMX_RX_STARTCODE
	DMX_TX_FRAMES, DMX_RX_FRAMES

	Via Bulk Pipe - old version
	Via Bulk Pipe - new version
	The Command Structure
	The Data Structure
	The Status Structure

	Changes
	Firmware
	Programming Specifications

