Intelligent Tunable White LED Driver (Constant Current) - Housing made from SAMSUNG/COVESTRO's V0 flame retardant PC materials. • Ultra small, thin and lightweight, screwless end cap. - Change the dimming interface, output current, DALI address and other parameters on the NFC programmer or via the App, and sync the parameters to the driver. - Set the DALI group, scene in the advanced DALI template. - Set the output current down to 1mA. - DALI bus standard IEC62386-101, 102, 207. - Class 2 LED driver, Safety Extra Low Voltage (SELV). - Soft-on and fade-in dimming function enhances your visual comfort. - T-PWM™ dimming technology allows quality and high-end lighting. - The whole dimming process is flicker-free with high frequency exemption level. - $\bullet\,$ Comply with the EU's ErP Directive, standby power consumption<0.5W. - $\bullet\,$ Multiple current levels, wide voltage range, suitable for LEDs with different power - When there is no load, the output will be 0V to prevent damage to LEDs due to poor contact. - Overheat, over voltage, overload, short circuit protection and automatic recovery. - Suitable for Class I / II / III indoor light fixtures. - Up to 50,000-hour life time. - 5-year warranty (Rubycon capacitor). Dimmable 10000:1 W UK W O CB SELV C Class 2 ErP O D D ### **Technical Specs** | Model | | SE-40-3 | 300-1050-W1D | | SE-30-200-800-W1D | | |------------------|--|--|--|--|------------------------------|--| | | Output Type | Constan | t Current | | | | | Features | Dimming Interface | DALIDT6 | | | | | | | Output Feature | Isolation | 1 | | | | | | Protection Grade | IP20 | | | | | | | Insulation Grade | Class II | (Suitable for class I/ II /I | II light fixtures) | | | | | Output Voltage | 9-42Vdc | | | | | | OUTPUT | Maximum output voltage | ≤55V | | | | | | | Output Current Range | 300-1050mA 200-800mA | | | | | | | Output Power Range | 2.7W-40W 1.8W-30W | | | | | | | Dimming Range | 0~100%, down to 0.01% | | | | | | | LF Current Ripple | <3%(Maximum current for non dimming state) | | | | | | | Current Accuracy | ±5% | | | | | | | PWM Frequency | 3600Hz | | | | | | INPUT | DC Voltage Range | 120-300Vdc | | | | | | | AC Voltage Range | 100-240Vac | | | | | | | Input Voltage | 115Vac/230Vac | | | | | | | Frequency | 50/60Hz | | | | | | | Input Current | <0.45A/ | | | <0.34A/115Aac | | | | Power Factor | | 230Vac, at full load | | | | | | THD | THD<10%/230Vac, at full load | | | | | | • • | Efficiency (Typ.) | HD≤10%/230Vac, at tull load
 88% 87% | | | | | | | Inrush Current | | art 25A(Test twidth=130) | ıs tested under 50% Ipeak)/230Vac | 1 | | | | Anti Surge | | | is tested and of the speak, great as | | | | | Leakage Current | L-N: 2KV Max. 0.5mA | | | | | | | Working Temperature | | | | | | | ENVIRONMENT | Working Humidity | ta: -20 ~ 45°C tc: 90°C | | | | | | | Storage Temperature/Humidity | 20 ~ 95%RH, non-condensing | | | | | | EITTIN OTTINEITT | Temperature Coefficient | | | | | | | | Vibration | ±0.03%/°C[0-50°C] 10-500Hz 2G 12min/1cycle 72 min for X Y and 7 axes respectively | | | | | | | Overload Protection | 10-500Hz, 2G 12min/1cycle, 72 min for X, Y and Z axes respectively | | | | | | | Overheat Protection | Automatically protect the device when the load exceeds 102% of the rated power. Automatically recover once load is reduced Intelligently adjust or turn off the current output if the PCB temperature >110°C. When the PCB temperature <90°C, automatically recover normal output | | | | | | PROTECTION | Overvoltage Protection | Automatically protect the device when voltage exceeds the no-load voltage. It can be recovered automatically | | | | | | | Short Circuit Protection | Enter hiccup mode if short circuit occurs, and recover automatically | | | | | | | | I/P-0/P: 3750Vac | | | | | | | Withstand Voltage Insulation Resistance | | P: 100MΩ/500VDC/25°C | 7/700/ PH | | | | | ilisulation Nesistance | CCC | China | GB19510.1, GB19510.14 | | | | | | TUV | Germany | EN61347-1, EN61347-2-13, EN62493 | | | | | Safety Standards | CB | CB Member States | IEC61347-1, IEC61347-2-13 | | | | | | CE | European Union | EN61347-1, EN61347-2-13, EN62384 | | | | | | KC | Korea | KC61347-1, KC61347-2-13 | | | | | | EAC | Russia | IEC61347-1, IEC61347-2-13 | | | | CAFETY | | RCM | Australia | | | | | SAFETY
& | | | | AS 61347-1, AS 61347-2-13 | | | | EMC | | ENEC | Europe | EN61347-1, EN61347-2-13, EN62384 BS EN 41347-1 BS EN 41347-2-13 BS EN 42493 | | | | LING | | UKCA | Britain | BS EN 61347-1, BS EN 61347-2-13, BS EN 62493 IS 15885 [PART 2/SEC 13] | | | | | | CUL | India | | | | | | | FCC | Canada
America | CSA C22.2 NO.250.13
UL 8750 | | | | | | CCC | China | GB/T17743, GB17625.1 | | | | | EMC Emission | CE | | EN55015, EN61000-3-2, EN61000-3-3, EN | 141547 | | | | | | European Union | | NU 1347 | | | | | KC | Korea | KSC 9815, KSC 9547 | | | | | | | Russia | IEC62493, IEC61547, EH55015 | | | | | | EAC | A | ENIFECTE ENI/1000 0 0 ENI/1000 0 0 E | 1/15/7 | | | | | RCM | Australia
Britain | EN55015, EN61000-3-2, EN61000-3-3, EN | | | | | | RCM
UKCA | Britain | BS EN IEC 55015, BS EN IEC 61000-3-2, E | | | | | | RCM
UKCA
CUL | Britain
Canada | BS EN IEC 55015, BS EN IEC 61000-3-2, E
ICES-005 | | | | | EMC Immunity | RCM
UKCA
CUL
FCC | Britain
Canada
America | BS EN IEC 55015, BS EN IEC 61000-3-2, E
ICES-005
FCC PART 15B | | | | | EMC Immunity | RCM
UKCA
CUL
FCC
EN6100 | Britain
Canada
America
10-4-2,3,4,5,6,8,11, EN | BS EN IEC 55015, BS EN IEC 61000-3-2, E
ICES-005
FCC PART 15B
61547 | | | | | | RCM UKCA CUL FCC EN6100 Standby | Britain
Canada
America
10-4-2,3,4,5,6,8,11, ENo
power consumption | BS EN IEC 55015, BS EN IEC 61000-3-2, E
ICES-005
FCC PART 15B
51547
No standby mode | | | | | EMC Immunity Power Consumption | RCM UKCA CUL FCC EN6100 Standby Networl | Britain
Canada
America
10-4-2,3,4,5,6,8,11, ENo
power consumption
ked standby | BS EN IEC 55015, BS EN IEC 61000-3-2, E ICES-005 FCC PART 15B 51547 No standby mode <0.5W | | | | ErP | | RCM UKCA CUL FCC EN6100 Standby Networl | Britain Canada America 10-4-2,3,4,5,6,8,11, ENo power consumption ked standby power consumption | BS EN IEC 55015, BS EN IEC 61000-3-2, E ICES-005 FCC PART 15B 51547 No standby mode <0.5W <0.5W | IS EN 61000-3-3, BS EN 61547 | | | ErP | Power Consumption | RCM UKCA CUL FCC EN6100 Standby Networl No-load | Britain Canada America 10-4-2,3,4,5,6,8,11, ENd power consumption ked standby power consumption power consumption 89 | BS EN IEC 55015, BS EN IEC 61000-3-2, E ICES-005 FCC PART 15B 51547 No standby mode <0.5W | IS EN 61000-3-3, BS EN 61547 | | | ErP | | RCM UKCA CUL FCC EN6100 Standby Networl | Britain Canada America 10-4-2,3,4,5,6,8,11, ENd power consumption ked standby power consumption power consumption 89 | BS EN IEC 55015, BS EN IEC 61000-3-2, E ICES-005 FCC PART 15B 51547 No standby mode <0.5W <0.5W | IS EN 61000-3-3, BS EN 61547 | | | ErP | Power Consumption | RCM UKCA CUL FCC EN6100 Standby Networl No-load | Britain Canada America 10-4-2,3,4,5,6,8,11, ENd power consumption ked standby power consumption 89 | BS EN IEC 55015, BS EN IEC 61000-3-2, E ICES-005 FCC PART 15B 61547 No standby mode © 0.5W Meet IEEE 1789 standard/High frequency es | IS EN 61000-3-3, BS EN 61547 | | | ErP | Power Consumption Flicker/Stroboscopic Effect | RCM UKCA CUL FCC EN6100 Standby Network No-load IEEE 17 | Britain Canada America 10-4-2,3,4,5,6,8,11, ENd power consumption ked standby power consumption 89 1 actor | BS EN IEC 55015, BS EN IEC 61000-3-2, E ICES-005 FCC PART 15B 51547 No standby mode <0.5W <0.5W Meet IEEE 1789 standard/High frequency es Pst LM<1.0, SVM<0.4 | S EN 61000-3-3, BS EN 61547 | | ### **Product Size** Unit: mm # Wiring Diagram ### **Current and Parameters Sheet** | Set output current on the NFC programmer or via the App | | | | | | |---|----------------|-----------|------------|-------------|--| | | Output Current | 300-950mA | 950-1000mA | 1000-1050mA | | | SE-40-300-1050-W1D | Output Voltage | 9-42V | 9-40V | 9-38V | | | | Output Power | 2.7-40W | 8.55-40W | 9-40W | | | Set output current on the NFC programmer or via the App | | | | | | |---|----------------|-----------|-----------|-----------|--| | | Output Current | 200-700mA | 700-750mA | 750-800mA | | | SE-30-200-800-W1D | Output Voltage | 9-42V | 9-40V | 9-37V | | | | Output Power | 1.8-30W | 6.3-30W | 6.75-30W | | # Protective Housing Application Diagram 1. Use a tool to pry up the protective housing on the side panel. 2. Pry up the protective housing in the side plate position with a tool. 3. Connect to electrical wires with a screwdriver as wiring diagram shows. 4. Press down the tension plate to fix the the electrical wires. 5. Close the protective housing. # **Installation Precautions** Please not place the products on LED drivers. The distance between the product and the driver should be >15cm so as not to affect heat dissipation and shorten the lifespan of the products. ### Work with a NFC programmer (LT-NFC) Change the output current, DALI address and other parameters on the NFC programmer. After modification, batch parameters can be be written to the driver. * Before you begin setting the parameters of the driver on the NFC programmer, please make sure the driver is powered off. #### 1. Read the LED driver Power the programmer by using the USB cable, then select "NFC Driver Settings" and press "OK" button. Next, keep the programmer's sensing area close to the NFC logo of the driver to read the driver parameters. #### 2. Change the driver parameters (Output current/address) On the home page of the programmer, press "Av" button to select the parameters you want to change and press the "OK" button to edit them. Then, press "Av" button to adjust the parameter values and press "de to select the next needed value. After the parameter values are modified, save them by pressing the "OK" button. Note: (1) If the current value you set is out of range, The programmer will report an error; [2] The DALI address range: 0-63. #### 3. Write to the driver On the home page of the programmer, press the "Av" button to select [> Ready to Write], then press the "OK" button. After the screen displays "Ready to write...", please keep the programmer's sensing area close to the NFC logo of the driver. When the screen displays "Write succeeded", it means the parameters have been successfully changed. # Use the NFC Lighting APP Scan the QR code below with your mobile phone and follow the prompts to complete the APP installation (According to performance requirements, you need to use a NFC-capable Android phone, or an iphone 8 and later that are compatible with iOS 13 or higher). * Before you begin setting the parameters of the driver on the NFC programmer or via the APP, please make sure the driver is powered off. ### Read/Write the LED driver Use your NFC-capable phone to read the driver parameters, then set the output current, address, other parameters, or set the advanced DALL template depending your needs. Save your settings and hold your phone close to the driver again, so the parameters can be easily written to the driver. ### 1. Read the LED driver On the APP home page, click [Read/Write LED driver] , then keep the programmer's sensing area close to the NFC logo of the driver to read the driver parameters. ### 2. Edit the parameters Click 【Parameter settings】 to edit the advanced parameters, like output current, DALI address, dimming curve, advanced DALI template, etc. ### 3. Write to the drive After completing the parameter settings, click [Write] in the upper right corner, and keep the programmer's sensing area close to the NFC logo of the driver, so the parameters can be written to the driver. ### Write/Read on the NFC programmer Connect the NFC programmer to your phone and read the driver parameters with your phone. After editing the solution in the mobile App, you can sync it to the NFC programmer and write advanced parameters to mass LED drivers. ### 1. Connect to the NFC programmer Enable Bluetooth on your phone and power the NFC programmer first. Then press the button on the programmer to switch to "BLE Connection" and press "OK" button to wait for Bluetooth connection. On the APP home page, click [Write/Read on NFC programmer] — [Next] to search for the programmer and connect to it. #### 2. Read the LED driver On the "Programmer information" page, choose any solution for editing. Then keep the programmer's sensing area close to the NFC logo of the driver, to read the driver parameters. #### 3. Edit the parameters Click [Parameter settings] to edit the advanced parameters, like output current, DALI address, dimming curve, advanced DALI template, etc. Then click [Save] in the top right. #### 4. Write to the LED driver When the programmer screen shows "Sync ... succeeded", click "BACK" button to return to the home page and switch to the "APP Solutions", then press the "OK" button to access the optional solutions. Select the corresponding solution by pressing the " +> " button, then keep the programmer's sensing area close to the NFC logo of the driver. After this, the advanced solution can be written to a large number of the same model drivers. ### Advanced DALI template Integrate the functions of the DALI lighting system, edit the DALI group and lighting effects for scenes, then save them in the advanced template to achieve lighting programming. Setup page 1 (for Read/Write LED driver): Go to App home page — 【③】 icon in the top right — 【DALI template on phone】. $Setup\ page\ 2\ [for\ Read/Write\ on\ NFC\ programmer]\ -\ [CDALI\ template\ on\ programmer]\ .$ For more advanced solution settings, please scan the QR code below and check out the NFC programmer manual (model: LT - NFC). # Relationship Diagrams ### Efficiency VS Load ### Power Factor VS Load ### SE-40-300-1050-W1D # Efficiency VS Load # Power Factor VS Load # LTECH ### Flicker Test Sheet # **Packaging Specifications** | Model | SE-40-300-1050-W1D | SE-30-200-800-W1D | |-------------------|--|--| | Carton Dimensions | 320×275×106mm(L×W×H) | 320×275×106mm(L×W×H) | | Quantity | 20 PCS/Layer; 2 Layers/Carton; 40 PCS/Carton | 20 PCS/Layer; 2 Layers/Carton; 40 PCS/Carton | | Weight | 0.17 kg/PC; 7.6 kg±5%/Carton | 0.15 kg/PC; 6.8 kg±5%/Carton | # Packaging Image Inner Packaging Box Carton Packaging # Transportation and Storage 1. Transportation Products can be shipped via vehicles, boats and planes. During transportation, products should be protected from rain and sun. Please avoid severe shock and vibration during the loading and unloading process. 2. Storage The storage conditions should comply with the Class I Environmental Standards. The products that have been stored for more than six months are recommended to be re-inspected and can be used only after they have been qualified. ### **Attentions** - This product must be installed and adjusted by a qualified professional. - This product is non-waterproof (special models excepted). Please avoid the sun and rain. When installed outdoors, please ensure it is mounted in a water proof enclosure. - $\bullet \quad \mathsf{Good} \ \mathsf{heat} \ \mathsf{dissipation} \ \mathsf{will} \ \mathsf{extend} \ \mathsf{the} \ \mathsf{life} \ \mathsf{the} \ \mathsf{product}. \ \mathsf{Please} \ \mathsf{install} \ \mathsf{the} \ \mathsf{product} \ \mathsf{in} \ \mathsf{a} \ \mathsf{environment} \ \mathsf{with} \ \mathsf{good} \ \mathsf{ventilation}.$ - When you install this product, please avoid being near a large area of metal objects or stacking them to prevent signal interference. - · Please keep the product away from a intense magnetic field, a high pressure area or a place where lightning is easy to occur. - $\bullet \quad \text{Please check whether the working voltage used complies with the parameter requirements of the product.}\\$ - Before you power on the product, please make sure all the wiring is correct in case of incorrect connection that may cause a short circuit and damage the components, or trigger a accident - If a fault occurs, please do not attempt to fix the product by yourself. If you have any question, please contact the supplier. - * This manual is subject to changes without further notice. Product functions depend on the goods. Please feel free to contact our official distributors if you have any question. ### Warranty Agreement - Warranty periods from the date of delivery: 5 years. - $\bullet \quad \mathsf{Free} \ \mathsf{repair} \ \mathsf{or} \ \mathsf{replacement} \ \mathsf{services} \ \mathsf{for} \ \mathsf{quality} \ \mathsf{problems} \ \mathsf{are} \ \mathsf{provided} \ \mathsf{within} \ \mathsf{warranty} \ \mathsf{periods}.$ Warranty exclusions below: - Beyond warranty periods. - $\bullet \quad \text{Any artificial damage caused by high voltage, overload, or improper operations}.$ - Products with severe physical damage. - Damage caused by natural disasters and force majeure. - Warranty labels and barcodes have been damaged. - No any contract signed by LTECH. - 1. Repair or replacement provided is the only remedy for customers. LTECH is not liable for any incidental or consequential damage unless it is within the law. - 2. LTECH has the right to amend or adjust the terms of this warranty, and release in written form shall prevail. # **Update Log** | Version | Updated Time | Update Content | Updated by | |---------|--------------|------------------|------------| | Α0 | 2022.10.09 | Original version | Liu Weili |